On quantization of r-matrices for Belavin-Drinfeld Triples

نویسنده

  • A. P. Isaev
چکیده

We suggest a formula for quantum universal R-matrices corresponding to quasitriangular classical r-matrices classified by Belavin and Drinfeld for all simple Lie algebras. The R-matrices are obtained by twisting the standard universal R-matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of the Ggs Conjecture

We prove the GGS conjecture [GGS] (1993), which gives a particularly simple explicit quantization of classical r-matrices for Lie algebras gl(n), in terms of a matrix R ∈ Matn(C) ⊗ Matn(C) which satisfies the quantum YangBaxter equation (QYBE) and the Hecke condition, whose quasiclassical limit is r. The r-matrices were classified by Belavin and Drinfeld in the 1980’s in terms of combinatorial ...

متن کامل

Explicit Quantization of Dynamical R-matrices for Finite Dimensional Semisimple Lie Algebras

1.1. Classical r-matrices. In the early eighties, Belavin and Drinfeld [BD] classified nonskewsymmetric classical r-matrices for simple Lie algebras. It turned out that such r-matrices, up to isomorphism and twisting by elements from the exterior square of the Cartan subalgebra, are classified by combinatorial objects which are now called Belavin-Drinfeld triples. By definition, a Belavin-Drinf...

متن کامل

1 Verification of the GGS conjecture for sl(n), n ≤ 10.

In the 1980’s, Belavin and Drinfeld classified non-unitary solutions of the classical Yang-Baxter equation (CYBE) for simple Lie algebras [1]. They proved that all such solutions fall into finitely many continuous families and introduced combinatorial objects to label these families, Belavin-Drinfeld triples. In 1993, Gerstenhaber, Giaquinto, and Schack attempted to quantize such solutions for ...

متن کامل

A ug 1 99 9 Verification of the GGS conjecture for sl ( n ) , n ≤ 12 .

In the 1980’s, Belavin and Drinfeld classified non-unitary solutions of the classical Yang-Baxter equation (CYBE) for simple Lie algebras [1]. They proved that all such solutions fall into finitely many continuous families and introduced combinatorial objects to label these families, Belavin-Drinfeld triples. In 1993, Gerstenhaber, Giaquinto, and Schack attempted to quantize such solutions for ...

متن کامل

1 9 Ja n 19 99 Verification of the GGS conjecture for sl ( n ) , n ≤ 10 . Travis

In the 1980’s, Belavin and Drinfeld classified non-unitary solutions of the classical Yang-Baxter equation (CYBE) for simple Lie algebras [1]. They proved that all such solutions fall into finitely many continuous families and introduced combinatorial objects to label these families, Belavin-Drinfeld triples. In 1993, Gerstenhaber, Giaquinto, and Schack attempted to quantize such solutions for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008